MRI Cross-Modality Image-to-Image Translation
نویسندگان
چکیده
منابع مشابه
MRI Image-to-Image Translation for Cross-Modality Image Registration and Segmentation
We develop a novel cross-modality generation framework that learns to generate predicted modalities from given modalities in MR images without real acquisition. Our proposed method performs image-to-image translation by means of a deep learning model that leverages conditional generative adversarial networks (cGANs). Our framework jointly exploits the low-level features (pixel-wise information)...
متن کاملUnsupervised Image-to-Image Translation Networks
Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assum...
متن کاملImage to Image Translation for Domain Adaptation
We propose a general framework for unsupervised domain adaptation, which allows deep neural networks trained on a source domain to be tested on a different target domain without requiring any training annotations in the target domain. This is achieved by adding extra networks and losses that help regularize the features extracted by the backbone encoder network. To this end we propose the novel...
متن کاملToward Multimodal Image-to-Image Translation
Many image-to-image translation problems are ambiguous, as a single input image may correspond to multiple possible outputs. In this work, we aim to model a distribution of possible outputs in a conditional generative modeling setting. The ambiguity of the mapping is distilled in a low-dimensional latent vector, which can be randomly sampled at test time. A generator learns to map the given inp...
متن کاملImage Segmentation Using MRI Vertebral Cross-Sections
Computer Assisted Spinal Surgery requires the development of a 3-D image of a patient’s spine. A method is being developed to construct such a 3-D spinal image from axial MRI cross-sections, using a deformable template. This paper outlines techniques used to register the model with the patient data. First an algorithm based on symmetry of the anatomy is developed to determine the position and o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2020
ISSN: 2045-2322
DOI: 10.1038/s41598-020-60520-6